Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Blood Cancer Discov ; 4(2): 106-117, 2023 03 01.
Article in English | MEDLINE | ID: covidwho-2250696

ABSTRACT

Patients with multiple myeloma (MM) mount suboptimal neutralizing antibodies (nAb) following 2 doses of SARS-CoV-2 mRNA vaccines. Currently, circulating SARS-CoV-2 variants of concern (VOC) carry the risk of breakthrough infections. We evaluated immune recognition of current VOC including BA.1, BA.2, and BA.5 in 331 racially representative patients with MM following 2 or 3 doses of mRNA vaccines. The third dose increased nAbs against WA1 in 82%, but against BA variants in only 33% to 44% of patients. Vaccine-induced nAbs correlated with receptor-binding domain (RBD)-specific class-switched memory B cells. Vaccine-induced spike-specific T cells were detected in patients without seroconversion and cross-recognized variant-specific peptides but were predominantly CD4+ T cells. Detailed clinical/immunophenotypic analysis identified features correlating with nAb/B/T-cell responses. Patients who developed breakthrough infections following 3 vaccine doses had lower live-virus nAbs, including against VOC. Patients with MM remain susceptible to SARS-CoV-2 variants following 3 vaccine doses and should be prioritized for emerging approaches to elicit variant-nAb and CD8+ T cells. SIGNIFICANCE: Three doses of SARS-CoV-2 mRNA vaccines fail to yield detectable VOC nAbs in nearly 60% and spike-specific CD8+ T cells in >80% of myeloma patients. Patients who develop breakthrough infections following vaccination have low levels of live-virus nAb. This article is highlighted in the In This Issue feature, p. 101.


Subject(s)
COVID-19 , Multiple Myeloma , Humans , SARS-CoV-2 , Breakthrough Infections , COVID-19/prevention & control , CD8-Positive T-Lymphocytes , mRNA Vaccines , Antibodies, Neutralizing
2.
J Clin Oncol ; 40(26): 3057-3064, 2022 09 10.
Article in English | MEDLINE | ID: covidwho-1731566

ABSTRACT

PURPOSE: Vaccine-induced neutralizing antibodies (nAbs) play a critical role in protection from SARS CoV-2. Patients with B-cell malignancies including myeloma are at increased risk of COVID-19-related mortality and exhibit variable serologic response to the vaccine. The capacity of vaccine-induced antibodies in these patients to neutralize SARS CoV-2 or its variants is not known. METHODS: Sera from 238 patients with multiple myeloma (MM) undergoing SARS CoV-2 vaccination were analyzed. Antibodies against the SARS CoV-2 spike receptor-binding domain (RBD) and viral nucleocapsid were measured to detect serologic response to vaccine and environmental exposure to the virus. The capacity of antibodies to neutralize virus was quantified using pseudovirus neutralization assay and live virus neutralization against the initial SARS CoV-2 strain and the B1.617.2 (Delta) variant. RESULTS: Vaccine-induced nAbs are detectable at much lower rates (54%) than estimated in previous seroconversion studies in MM, which did not monitor viral neutralization. In 33% of patients, vaccine-induced antispike RBD antibodies lack detectable neutralizing capacity, including against the B1.617.2 variant. Induction of nAbs is affected by race, disease, and treatment-related factors. Patients receiving mRNA1273 vaccine (Moderna) achieved significantly greater induction of nAbs compared with those receiving BNT162b2 (Pfizer; 67% v 48%, P = .006). CONCLUSION: These data show that vaccine-induced antibodies in several patients with MM lack detectable virus-neutralizing activity. Vaccine-mediated induction of nAbs is affected by race, disease, vaccine, and treatment characteristics. These data have several implications for the emerging application of booster vaccines in immunocompromised hosts.


Subject(s)
COVID-19 Vaccines , COVID-19 , Multiple Myeloma , 2019-nCoV Vaccine mRNA-1273 , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Humans , Neutralization Tests , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccination
3.
Blood Cancer Discov ; 2(1): 9-12, 2021 01.
Article in English | MEDLINE | ID: covidwho-1299253

ABSTRACT

Patients with hematologic malignancies have increased susceptibility to viral infections and suboptimal immunologic responses to current vaccines due to both disease-associated and therapy-related immune dysfunction. These considerations may impact the efficacy of emerging COVID-19 vaccines in this patient population as well and warrant the need to systematically study natural and vaccine-induced virus-specific immunity in these patients.


Subject(s)
COVID-19 , Hematologic Neoplasms , Virus Diseases , COVID-19 Vaccines , Humans , SARS-CoV-2 , Virus Diseases/prevention & control
4.
Blood Adv ; 5(5): 1535-1539, 2021 03 09.
Article in English | MEDLINE | ID: covidwho-1122295

ABSTRACT

Patients with plasma cell dyscrasias (PCDs) experience an increased burden of influenza, and current practice of single-dose annual influenza vaccination yields suboptimal protective immunity in these patients. Strategies to improve immunity to influenza in these patients are clearly needed. We performed a randomized, double-blind, placebo-controlled clinical trial comparing tandem Fluzone High-Dose influenza vaccination with standard-of-care influenza vaccination. Standard-of-care vaccination was single-dose age-based vaccination (standard dose, <65 years; high dose, ≥65 years), and patients in this arm received a saline placebo injection at 30 days. A total of 122 PCD patients were enrolled; 47 received single-dose standard-of-care vaccination, and 75 received 2 doses of Fluzone High-Dose vaccine. Rates of hemagglutinin inhibition (HAI) titer seroprotection against all 3 strains (H1N1, H3N2, and influenza B) were significantly higher for patients after tandem high-dose vaccination vs control (87.3% vs 63.2%; P = .003) and led to higher seroprotection at the end of flu season (60.0% vs 31.6%; P = .04). These data demonstrate that tandem high-dose influenza vaccination separated by 30 days leads to higher serologic HAI titer responses and more durable influenza-specific immunity in PCD patients. Similar vaccine strategies may also be essential to achieve protective immunity against other emerging pathogens such as novel coronavirus in these patients. This trial was registered at www.clinicaltrials.gov as #NCT02566265.


Subject(s)
Influenza Vaccines/administration & dosage , Influenza Vaccines/immunology , Influenza, Human/immunology , Paraproteinemias/immunology , Adult , Aged , Aged, 80 and over , Double-Blind Method , Humans , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL